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MOTION OF A VISCOPLASTIC LIQUID IN A POROUS INHOMOGENEOUS MEDIUM
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ABSTRACT: Equations of motion are derived for a viscoplastic liquid
in a nonuniform medium of type 2 (piecewise uniform) or type 3 (with
a variable filtration coefficient) [1] on the assumption that the motion
is of steady-state type. Solutions are presented for a parallel flow and
a flow with axial symmetry.

The motion of a viscoplastic liquid in a porous homogeneous
medium has already been considered [1], and it has been shown
that the flow rate under engineering structures is finite for a porous
medium of infinite size. Equations have been deduced [27 for the
motion of a viscoplastic liquid in an inhomogenecus medium, and
the conclusions of [1] have been confirmed by experiment [3].

Here I consider the steady-state motion of an incompressible
viscoplastic liquid in an inhomogeneous medium of type 2 or type
3. It is assumed that there are no stagnant zones in the flow region.
Examples are given of this type of motion.

1. The basic equation extending D'Arcy's law to a viscoplastic
fluid is [1]

v::——k<1-——-]—<i—>grad}1 E=-2 4, @
[grad H | ’ Pg ) )

Here z is the vertical coordinate. We assume that everywhere in
the porous medium |grad H| > Kx

The inhomogeneity of a porous medium is reflected in the fil-
tration coefficient k, whereas here the inhomogeneity is character-
ized also by variation in the initial gradient K% Hence there can be
more complicated cases of inhomogeneous media here.

2. Consider a medium of type 2, i.e., plecewise homogeneous.
Here the region filled by the porous medium may be divided into
n subregions Dy (j = 1, ..., 1), in each of which k and K* are con-
stant.

All quantities in region Dj are written with subscript j; then in
any region divvj = 0, and then, from (1.1),

K;*
(i - | grad H;| )AH5 +
‘ ‘Kj*gradH,--grad]gradeP .
+ 2 grad H;® — == (0 in Dj, 2.1)
or
K _grad H;-grad | grad H; |* )
AH; = [grad & (AHJ T olgrad H;F ;P inD;. (2.2)

These relations coincide with (3.10) of [1].

Equations (2.1) must be solved with allowance for the conditions
at the boundary of D and for the conditions at the boundary S;j
commen to regions Dj and Dj (i # j), The first condition requires
that the pressure be continuous at Sjij,

(2.3
The second condition implies continuity in the normal velocity
at Sij'
K;* ) oH, ( K;* oH
k; (1 ~ grad ;1) an < B\t T [grad ij') o @9

Conditions (2.3) and (2.4) must be used with the small-pertur-
bation method, where Hj is put in the form Hjp+Hj", in which
Hj, corresponds to an inhomogeneous medium whose initial gradient
is zero,

If we assume that |Hj} and |grad H;I are small relative to [Hjy
and Igrad Hjol respectively, then we can neglect terms of order
ij (n= 2) in the conditions and
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Function Hj satisfies equations readily deduced from (2.1).
If k varies from point to point, the equations of continuity give

K*
(1 - l_g_rml_H—r) (grad k-grad H + kAH) 4

grad H

rad | grad H |
grad | gr l—gradK‘)Tg*r—a—d—HT=O. (2.6)

+k(xe 2Tgrad H P

* = ( gives us an equation describing the motion of an ordinary
viscous fluid in an inhomogeneous medium of type 3; we get
(2.2) if k and K* are constant.
If the inhomogeneity is of type 2 for k and of type 3 for K*, the
medium may be said to be of type 2-3; similarly, it is of type
8-2 if it is of type 8 for k and type 2 for K*.
We now consider parallel motion and motion with axial symmetry
in a horizontal plate.
3. Let the x axis lie along the flow. We assume that the bound-
aries of the layer are x = 0 and x = L, and also that

H(O)= Hy>H ()= H®

a) Medium of type 2. Let x = [ (0 <1 < L) be the equation of the
boundary between two different media; then (1.1) may be written

7

aH,
“‘”—“"‘5(71? +K1*)

=10l =2, i) (3.1)
with
dH,-
- K ((=1,2) (3.2)

The equation of continuity implies that dZHj/dx2 =0, from
which

Hj= 4z + B, 33
in which Aj and Bj are constants and —Aj > Ki* The boundary
conditions for x = 0 and x =L give

H,= B, H°® = A,L + B,. (3.4)
From the conditions at the interfaces we have
4,0+ By = A4l + By, By (4 + K*) =k (4, + KY). (3.5
Then we get

_ ks (Ho — Ho) + (k1K1‘ - kﬂKﬂ‘) (L'— l)

Ay = B (L— 1) Tl '
‘ ko (Ho — H°) + (iaKy® — 51K o*)
A== W(L—1) F o (3:6)

HOL (kg — k1) ++ HoLky 4 (koKg* — k1 K;*) 1L
L=+l -

By =Hy, By =
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We put ut =ky(L — 1)+ kel to get
Hy= — [ky (Hy — H°) +
+ (B K* — kK*) (L — DU, + Hy,
Hy= [k (H*— Ho) (z— D) +
+ (ki K* — kK ®)l (2 — LY + kHOUU, (8.7)
The velocity u is defined by '

Hy— H® — Ko* (L— 1) — Kyl
B2 (L — 1) F kol T

= bk, (8.8}
The pressure distribution in a homogeneous medium is not
dependent on the initial gradient and is governed by the flow speed.
in the present case Ky and Ky are the result of the pressure and velocity
distributions.
b) Medium of type 3. The equation of motion is

w=— k(S ke O<a<D),

and (2.6) is written as

24 dK* dH dk
k(d:v2 + dx )+( dx +K')E =0.
But k # 0, so we get a second-order equation with variable coef-
ficients,
a*H dink dH

i . dink

dK*
o dr  dx w T =0 (39

In the simple case where k = k¥, K* = const, Eq. (3.9)
becomes
a2 dH
T C— + CKr =0, (3.10)

The general solution is written as
He— 4,0 _kr B,
The boundary conditions give
H= [(Hy — H® — K*L)eC= -1-
4 H® — HoeCL 4 K*L] (1 — Ol — K%z, (3.11)
The velocity in this case must be

(Hn-——H°

u=kC T

— K*) (1— e Ol 1, (3.12)

This expression is clearly always positive.
The pressure and velocity distributions are dependent on K*, If the
parameters of the medium may be represented as linear functions,
k= a- bz, K* = 4* + B*z, (8.13)

Eq. (3.9) becomes

de? +a+z ’35‘+ o+ =0, (8.1
in which
o= abl, A =VA* + aB*, B = 2B*, (3.15)
The solution to this equation is sought as
H=Mh@eg+a)+ N—A[z—aln(a -+ 2))+
+ 1/,B [V, Caz — 2*) —a? In (& + 2)]. (3.16)

The boundary conditions give us M and N as
M=
= [2(H°—-Ho)+ZA [L—aln(1+L/o}+
+B[a=1n(1+L;a)—aL—1/2Lz)] .
-[2111 (1+L/cz)]-l,

Ina o 20— L
NéHu+m[H —Hy— AL+4- BL— ], (3.17)
and the velocity is
u= — (ad* + bM), (3.18)

so the solution for the corresponding homogeneous medium is found
for B*—~ 0 and b -~ 0.

4, For motion with central symmetry we denote the boundaries
of the porous medium by r = 1y and r = °, at which H takes the values
H, and H° respectively; we assume that Ho> Y Let q be the flow per
unit thickness.

a) Medium of the second type. Letr =R (rg < R < ") be the

-equation of the common boundary of the two media, whose filtration

coefficients are respectively k; and k,. Then the velocity uj may be
written as

(i=1. rolr<R

dHJ-
u,z»—kj <—dr_ +K"’]~) j=2, R<r<r°)‘ (4.1)

7

The equation of continuity is written as

Zﬂ:ruj =q, (4.2)
in which r and j have the values as in (4.1).
From (4.2) we have that Hj satisfies
dH
- == Eigkj—r — K. (4.3
Then
Hj = — ZJZ,C? lnr-Kj*r—}-Mj .

If Hyand HC are given, we have to determine the three constants
M;, M,, and q, which may be derived from (2.3) with the boundary
conditions at r = r, and r = ¥ here (2.4) is cbeyed automatically. The
equations for the constants are

Hy = — Ts%qln ro — Ky*rg— My,

q

0 = e 1
" 25vky

Inr®— Ky*r® 4 M,,
— 5L R —Ky#R + My =
2mky -4 1

q
- mlnR—Kz*R 4 M.

The flow rate is given by

Hy— H° — Kv* (R — 1g) — Ko* (r° — R)

EAm =K (/R 49

g =27
which is always positive, For H; and H, we have
(ro<lr < B),
(RLrr), (4.9)

r
Hy= H, —Tq—ln L

BTN o — Ky*(r—n)

g r o
Hy=H, —mln—’ﬁ“-‘l-Kz*(r —7)

in which q is defined by (4.4).
b) Medium of the third type. Here H satisfies

dH q

& T T me KT



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 97

If k = k(r) and K* = K«r) are linear functions,
k=a-+br, K*=A + Br, (4.6)

function H will be
H=—;lm—___ -
- 2ma nr—kab‘1 _(AF+B‘2—)+M'
The boundary conditions give the flow as

2 (Hy— H®) — 24 (r° — ro) — B (r*! — %)

g=na T ire (a+bro)]'—ln[Yu (a + br°)} 4.7)
For H we have
b -] B
H=g° —2_:37111;"(—?111——!#;‘_ A(r—r®) — 5 (rF—r%). (4.8)

Formulas (3.7), (3.8), (3.16), (3.18), (4.4), (4.5), (4.7), (4.8)
generalize the expressions for the underground hydrodynamics of
a simple viscous liquid to the case of a viscoplastic medium.

More complex inhomogeneous media, which may be called mixed,
may be discussed for one-dimensional motion or for motion with
central symmetry, as for media of types 2-3 or 3-2, or combinations
of these.
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